How to read a .xlsx file using the pandas Library in iPython?


I want to read a .xlsx file using the Pandas Library of python and port the data to a postgreSQL table.

All I could do up until now is:

import pandas as pd
data = pd.ExcelFile("*File Name*")

Now I know that the step got executed successfully, but I want to know how i can parse the excel file that has been read so that I can understand how the data in the excel maps to the data in the variable data.
I learnt that data is a Dataframe object if I’m not wrong. So How do i parse this dataframe object to extract each line row by row.


I usually create a dictionary containing a DataFrame for every sheet:

xl_file = pd.ExcelFile(file_name)

dfs = {sheet_name: xl_file.parse(sheet_name) 
          for sheet_name in xl_file.sheet_names}

Update: In pandas version 0.21.0+ you will get this behavior more cleanly by passing sheet_name=None to read_excel:

dfs = pd.read_excel(file_name, sheet_name=None)

In 0.20 and prior, this was sheetname rather than sheet_name (this is now deprecated in favor of the above):

dfs = pd.read_excel(file_name, sheetname=None)
Answered By: Andy Hayden

DataFrame’s read_excel method is like read_csv method:

dfs = pd.read_excel(xlsx_file, sheetname="sheet1")

Help on function read_excel in module

read_excel(io, sheetname=0, header=0, skiprows=None, skip_footer=0, index_col=None, names=None, parse_cols=None, parse_dates=False, date_parser=None, na_values=None, thousands=None, convert_float=True, has_index_names=None, converters=None, true_values=None, false_values=None, engine=None, squeeze=False, **kwds)
    Read an Excel table into a pandas DataFrame

    io : string, path object (pathlib.Path or py._path.local.LocalPath),
        file-like object, pandas ExcelFile, or xlrd workbook.
        The string could be a URL. Valid URL schemes include http, ftp, s3,
        and file. For file URLs, a host is expected. For instance, a local
        file could be file://localhost/path/to/workbook.xlsx
    sheetname : string, int, mixed list of strings/ints, or None, default 0

        Strings are used for sheet names, Integers are used in zero-indexed
        sheet positions.

        Lists of strings/integers are used to request multiple sheets.

        Specify None to get all sheets.

        str|int -> DataFrame is returned.
        list|None -> Dict of DataFrames is returned, with keys representing

        Available Cases

        * Defaults to 0 -> 1st sheet as a DataFrame
        * 1 -> 2nd sheet as a DataFrame
        * "Sheet1" -> 1st sheet as a DataFrame
        * [0,1,"Sheet5"] -> 1st, 2nd & 5th sheet as a dictionary of DataFrames
        * None -> All sheets as a dictionary of DataFrames

    header : int, list of ints, default 0
        Row (0-indexed) to use for the column labels of the parsed
        DataFrame. If a list of integers is passed those row positions will
        be combined into a ``MultiIndex``
    skiprows : list-like
        Rows to skip at the beginning (0-indexed)
    skip_footer : int, default 0
        Rows at the end to skip (0-indexed)
    index_col : int, list of ints, default None
        Column (0-indexed) to use as the row labels of the DataFrame.
        Pass None if there is no such column.  If a list is passed,
        those columns will be combined into a ``MultiIndex``
    names : array-like, default None
        List of column names to use. If file contains no header row,
        then you should explicitly pass header=None
    converters : dict, default None
        Dict of functions for converting values in certain columns. Keys can
        either be integers or column labels, values are functions that take one
        input argument, the Excel cell content, and return the transformed
    true_values : list, default None
        Values to consider as True

        .. versionadded:: 0.19.0

    false_values : list, default None
        Values to consider as False

        .. versionadded:: 0.19.0

    parse_cols : int or list, default None
        * If None then parse all columns,
        * If int then indicates last column to be parsed
        * If list of ints then indicates list of column numbers to be parsed
        * If string then indicates comma separated list of column names and
          column ranges (e.g. "A:E" or "A,C,E:F")
    squeeze : boolean, default False
        If the parsed data only contains one column then return a Series
    na_values : scalar, str, list-like, or dict, default None
        Additional strings to recognize as NA/NaN. If dict passed, specific
        per-column NA values. By default the following values are interpreted
        as NaN: '', '#N/A', '#N/A N/A', '#NA', '-1.#IND', '-1.#QNAN', '-NaN', '-nan',
    '1.#IND', '1.#QNAN', 'N/A', 'NA', 'NULL', 'NaN', 'nan'.
    thousands : str, default None
        Thousands separator for parsing string columns to numeric.  Note that
        this parameter is only necessary for columns stored as TEXT in Excel,
        any numeric columns will automatically be parsed, regardless of display
    keep_default_na : bool, default True
        If na_values are specified and keep_default_na is False the default NaN
        values are overridden, otherwise they're appended to.
    verbose : boolean, default False
        Indicate number of NA values placed in non-numeric columns
    engine: string, default None
        If io is not a buffer or path, this must be set to identify io.
        Acceptable values are None or xlrd
    convert_float : boolean, default True
        convert integral floats to int (i.e., 1.0 --> 1). If False, all numeric
        data will be read in as floats: Excel stores all numbers as floats
    has_index_names : boolean, default None
        DEPRECATED: for version 0.17+ index names will be automatically
        inferred based on index_col.  To read Excel output from 0.16.2 and
        prior that had saved index names, use True.

    parsed : DataFrame or Dict of DataFrames
        DataFrame from the passed in Excel file.  See notes in sheetname
        argument for more information on when a Dict of Dataframes is returned.
Answered By: flowera

The following worked for me:

from pandas import read_excel
my_sheet = 'Sheet1' # change it to your sheet name, you can find your sheet name at the bottom left of your excel file
file_name = 'products_and_categories.xlsx' # change it to the name of your excel file
df = read_excel(file_name, sheet_name = my_sheet)
print(df.head()) # shows headers with top 5 rows
Answered By: Hafizur Rahman

If you use read_excel() on a file opened using the function open(), make sure to add rb to the open function to avoid encoding errors

Answered By: Patrick Mutuku

Instead of using a sheet name, in case you don’t know or can’t open the excel file to check in ubuntu (in my case, Python 3.6.7, ubuntu 18.04), I use the parameter index_col (index_col=0 for the first sheet)

import pandas as pd
file_name = 'some_data_file.xlsx' 
df = pd.read_excel(file_name, index_col=0)
print(df.head()) # print the first 5 rows
Answered By: Harry

Assign spreadsheet filename to file

Load spreadsheet

Print the sheet names

Load a sheet into a DataFrame by name: df1

file = 'example.xlsx'
xl = pd.ExcelFile(file)
df1 = xl.parse('Sheet1')
Answered By: Danish

sometimes this code gives an error for xlsx files as: XLRDError:Excel xlsx file; not supported

instead , you can use openpyxl engine to read excel file.

df_samples = pd.read_excel(r'filename.xlsx', engine='openpyxl')
Answered By: Surender Singh