Convert Pandas Column to DateTime


I have one field in a pandas DataFrame that was imported as string format.

It should be a datetime variable. How do I convert it to a datetime column, and then filter based on date?


raw_data = pd.DataFrame({'Mycol': ['05SEP2014:00:00:00.000']})
Asked By: Chris



Use the to_datetime function, specifying a format to match your data.

df['Mycol'] = pd.to_datetime(df['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
Answered By: chrisb

edit: recommending to use pd.to_datetime() instead of this because .apply() is generally slower.

You can use the DataFrame method .apply() to operate on the values in Mycol:

>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'], columns=['Mycol'])
>>> df
0  05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x: 
...     dt.datetime.strptime(x, '%d%b%Y:%H:%M:%S.%f'))
>>> df
0 2014-09-05
Answered By: mechanical_meat

If you have more than one column to be converted you can do the following:

df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
Answered By: Vlad Bezden

Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.

import pandas as pd
raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
Answered By: Prateek Sharma

Time Saver:

raw_data['Mycol'] = pd.to_datetime(raw_data['Mycol'])
Answered By: Gil Baggio

Just like we convert object data type to float or int, use astype().

raw_data['Mycol'] = raw_data['Mycol'].astype('datetime64[ns]')
Answered By: Amar nayak
Setting the correct format= is much faster than letting pandas find out1

Long story short, passing the correct format= from the beginning as in chrisb’s post is much faster than letting pandas figure out the format, especially if the format contains time component. The runtime difference for dataframes greater than 10k rows is huge (~25 times faster, so we’re talking like a couple minutes vs a few seconds). All valid format options can be found at


errors='coerce' is useful

If some rows are not in the correct format or not datetime at all, errors= parameter is very useful, so that you can convert the valid rows and handle the rows that contained invalid values later.

df['date'] = pd.to_datetime(
    df['date'], format='%d%b%Y:%H:%M:%S.%f', errors='coerce')

# for multiple columns
df[['start', 'end']] = df[['start', 'end']].apply(
    pd.to_datetime, format='%d%b%Y:%H:%M:%S.%f', errors='coerce')
To silence SettingWithCopyWarning

On a side note, if you got this warning, then that means your dataframe was probably created by filtering another dataframe. Enable copy-on-write and you’re good to go. (see this post for more about it).

pd.set_option('copy_on_write', True)
df['date'] = pd.to_datetime(df['date'], format='%d%b%Y:%H:%M:%S.%f')

1 Code used to produce the timeit test plot.

import perfplot
from random import choices
from datetime import datetime

mdYHMSf = range(1,13), range(1,29), range(2000,2024), range(24), *[range(60)]*2, range(1000)
    kernels=[lambda x: pd.to_datetime(x), 
             lambda x: pd.to_datetime(x, format='%m/%d/%Y %H:%M:%S.%f'), 
             lambda x: pd.to_datetime(x, infer_datetime_format=True),
             lambda s: s.apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))],
            "pd.to_datetime(df['date'], format='%m/%d/%Y %H:%M:%S.%f')", 
            "pd.to_datetime(df['date'], infer_datetime_format=True)", 
            "df['date'].apply(lambda x: datetime.strptime(x, '%m/%d/%Y %H:%M:%S.%f'))"],
    n_range=[2**k for k in range(20)],
    setup=lambda n: pd.Series([f"{m}/{d}/{Y} {H}:{M}:{S}.{f}" 
                               for m,d,Y,H,M,S,f in zip(*[choices(e, k=n) for e in mdYHMSf])]),

If the column contains multiple formats, see Convert a column of mixed format strings to a datetime Dtype.

Answered By: cottontail
Categories: questions Tags: , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.