Convert Pandas Column to DateTime


I have one field in a pandas DataFrame that was imported as string format.
It should be a datetime variable.
How do I convert it to a datetime column and then filter based on date.


  • DataFrame Name: raw_data
  • Column Name: Mycol
  • Value
    Format in Column: ’05SEP2014:00:00:00.000′
Asked By: Chris



Use the to_datetime function, specifying a format to match your data.

raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')
Answered By: chrisb

You can use the DataFrame method .apply() to operate on the values in Mycol:

>>> df = pd.DataFrame(['05SEP2014:00:00:00.000'],columns=['Mycol'])
>>> df
0  05SEP2014:00:00:00.000
>>> import datetime as dt
>>> df['Mycol'] = df['Mycol'].apply(lambda x: 
>>> df
0 2014-09-05
Answered By: mechanical_meat
raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], format='%d%b%Y:%H:%M:%S.%f')

works, however it results in a Python warning of
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead

I would guess this is due to some chaining indexing.

Answered By: Darth BEHFANS

If you have more than one column to be converted you can do the following:

df[["col1", "col2", "col3"]] = df[["col1", "col2", "col3"]].apply(pd.to_datetime)
Answered By: Vlad Bezden

Use the pandas to_datetime function to parse the column as DateTime. Also, by using infer_datetime_format=True, it will automatically detect the format and convert the mentioned column to DateTime.

import pandas as pd
raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'], infer_datetime_format=True)
Answered By: Prateek Sharma

Time Saver:

raw_data['Mycol'] =  pd.to_datetime(raw_data['Mycol'])
Answered By: Gil Baggio

Just like we convert object data type to float or int. Use astype()

Answered By: Amar nayak
Categories: questions Tags: , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.