What is the currently correct way to dynamically update plots in Jupyter/iPython?

Question:

In the answers to how to dynamically update a plot in a loop in ipython notebook (within one cell), an example is given of how to dynamically update a plot inside a Jupyter notebook within a Python loop. However, this works by destroying and re-creating the plot on every iteration, and a comment in one of the threads notes that this situation can be improved by using the new-ish %matplotlib nbagg magic, which provides an interactive figure embedded in the notebook, rather than a static image.

However, this wonderful new nbagg feature seems to be completely undocumented as far as I can tell, and I’m unable to find an example of how to use it to dynamically update a plot. Thus my question is, how does one efficiently update an existing plot in a Jupyter/Python notebook, using the nbagg backend? Since dynamically updating plots in matplotlib is a tricky issue in general, a simple working example would be an enormous help. A pointer to any documentation on the topic would also be extremely helpful.

To be clear what I’m asking for: what I want to do is to run some simulation code for a few iterations, then draw a plot of its current state, then run it for a few more iterations, then update the plot to reflect the current state, and so on. So the idea is to draw a plot and then, without any interaction from the user, update the data in the plot without destroying and re-creating the whole thing.

Here is some slightly modified code from the answer to the linked question above, which achieves this by re-drawing the whole figure every time. I want to achieve the same result, but more efficiently using nbagg.

%matplotlib inline
import time
import pylab as pl
from IPython import display
for i in range(10):
    pl.clf()
    pl.plot(pl.randn(100))
    display.display(pl.gcf())
    display.clear_output(wait=True)
    time.sleep(1.0)
Asked By: N. Virgo

||

Answers:

Here is an example that updates a plot in a loop. It updates the data in the figure and does not redraw the whole figure every time. It does block execution, though if you’re interested in running a finite set of simulations and saving the results somewhere, it may not be a problem for you.

%matplotlib notebook

import numpy as np
import matplotlib.pyplot as plt
import time

def pltsin(ax, colors=['b']):
    x = np.linspace(0,1,100)
    if ax.lines:
        for line in ax.lines:
            line.set_xdata(x)
            y = np.random.random(size=(100,1))
            line.set_ydata(y)
    else:
        for color in colors:
            y = np.random.random(size=(100,1))
            ax.plot(x, y, color)
    fig.canvas.draw()

fig,ax = plt.subplots(1,1)
ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
for f in range(5):
    pltsin(ax, ['b', 'r'])
    time.sleep(1)

I put this up on nbviewer here.

There is an IPython Widget version of nbagg that is currently a work in progress at the Matplotlib repository. When that is available, that will probably be the best way to use nbagg.

EDIT: updated to show multiple plots

Answered By: pneumatics

I’m using jupyter-lab and this works for me (adapt it to your case):

from IPython.display import clear_output
from matplotlib import pyplot as plt
import numpy as np
import collections
%matplotlib inline

def live_plot(data_dict, figsize=(7,5), title=''):
    clear_output(wait=True)
    plt.figure(figsize=figsize)
    for label,data in data_dict.items():
        plt.plot(data, label=label)
    plt.title(title)
    plt.grid(True)
    plt.xlabel('epoch')
    plt.legend(loc='center left') # the plot evolves to the right
    plt.show();

Then in a loop you populate a dictionary and you pass it to live_plot():

data = collections.defaultdict(list)
for i in range(100):
    data['foo'].append(np.random.random())
    data['bar'].append(np.random.random())
    data['baz'].append(np.random.random())
    live_plot(data)

make sure you have a few cells below the plot, otherwise the view snaps in place each time the plot is redrawn.

Answered By: Ziofil

I’ve adapted @Ziofil answer and modified it to accept x,y as list and output a scatter plot plus a linear trend on the same plot.

from IPython.display import clear_output
from matplotlib import pyplot as plt
%matplotlib inline
    
def live_plot(x, y, figsize=(7,5), title=''):
    clear_output(wait=True)
    plt.figure(figsize=figsize)
    plt.xlim(0, training_steps)
    plt.ylim(0, 100)
    x= [float(i) for i in x]
    y= [float(i) for i in y]
    
    if len(x) > 1:
        plt.scatter(x,y, label='axis y', color='k') 
        m, b = np.polyfit(x, y, 1)
        plt.plot(x, [x * m for x in x] + b)

    plt.title(title)
    plt.grid(True)
    plt.xlabel('axis x')
    plt.ylabel('axis y')
    plt.show();

you just need to call live_plot(x, y) inside a loop.
here’s how it looks:
enter image description here

Answered By: Miguel Tomás

If you don’t want to clear all outputs, you can use display_id=True to obtain a handle and use .update() on it:

import numpy as np
import matplotlib.pyplot as plt
import time

from IPython import display

def pltsin(ax, *,hdisplay, colors=['b']):
    x = np.linspace(0,1,100)
    if ax.lines:
        for line in ax.lines:
            line.set_xdata(x)
            y = np.random.random(size=(100,1))
            line.set_ydata(y)
    else:
        for color in colors:
            y = np.random.random(size=(100,1))
            ax.plot(x, y, color)
    hdisplay.update(fig)


fig,ax = plt.subplots(1,1)
hdisplay = display.display("", display_id=True)

ax.set_xlabel('X')
ax.set_ylabel('Y')
ax.set_xlim(0,1)
ax.set_ylim(0,1)
for f in range(5):
    pltsin(ax, colors=['b', 'r'], hdisplay=hdisplay)
    time.sleep(1)
    
plt.close(fig)

(adapted from @pneumatics)

Answered By: BlackHC

The canvas.draw method of the figure dynamically updates its graphs, for the current figure:

from matplotlib import pyplot as plt

plt.gcf().canvas.draw()
Answered By: jolvi