# Binning a column with pandas

## Question:

I have a data frame column with numeric values:

```
df['percentage'].head()
46.5
44.2
100.0
42.12
```

I want to see the column as bin counts:

```
bins = [0, 1, 5, 10, 25, 50, 100]
```

How can I get the result as bins with their *value counts*?

```
[0, 1] bin amount
[1, 5] etc
[5, 10] etc
...
```

## Answers:

You can use `pandas.cut`

:

```
bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = pd.cut(df['percentage'], bins)
print (df)
percentage binned
0 46.50 (25, 50]
1 44.20 (25, 50]
2 100.00 (50, 100]
3 42.12 (25, 50]
```

```
bins = [0, 1, 5, 10, 25, 50, 100]
labels = [1,2,3,4,5,6]
df['binned'] = pd.cut(df['percentage'], bins=bins, labels=labels)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
```

```
bins = [0, 1, 5, 10, 25, 50, 100]
df['binned'] = np.searchsorted(bins, df['percentage'].values)
print (df)
percentage binned
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
```

…and then `value_counts`

or `groupby`

and aggregate `size`

:

```
s = pd.cut(df['percentage'], bins=bins).value_counts()
print (s)
(25, 50] 3
(50, 100] 1
(10, 25] 0
(5, 10] 0
(1, 5] 0
(0, 1] 0
Name: percentage, dtype: int64
```

```
s = df.groupby(pd.cut(df['percentage'], bins=bins)).size()
print (s)
percentage
(0, 1] 0
(1, 5] 0
(5, 10] 0
(10, 25] 0
(25, 50] 3
(50, 100] 1
dtype: int64
```

By default `cut`

returns `categorical`

.

`Series`

methods like `Series.value_counts()`

will use all categories, even if some categories are not present in the data, operations in categorical.

## Using the Numba module for speed up.

On big datasets (more than 500k), `pd.cut`

can be quite slow for binning data.

I wrote my own function in Numba with just-in-time compilation, which is roughly *six times* faster:

```
from numba import njit
@njit
def cut(arr):
bins = np.empty(arr.shape[0])
for idx, x in enumerate(arr):
if (x >= 0) & (x < 1):
bins[idx] = 1
elif (x >= 1) & (x < 5):
bins[idx] = 2
elif (x >= 5) & (x < 10):
bins[idx] = 3
elif (x >= 10) & (x < 25):
bins[idx] = 4
elif (x >= 25) & (x < 50):
bins[idx] = 5
elif (x >= 50) & (x < 100):
bins[idx] = 6
else:
bins[idx] = 7
return bins
```

```
cut(df['percentage'].to_numpy())
# array([5., 5., 7., 5.])
```

Optional: you can also map it to bins as strings:

```
a = cut(df['percentage'].to_numpy())
conversion_dict = {1: 'bin1',
2: 'bin2',
3: 'bin3',
4: 'bin4',
5: 'bin5',
6: 'bin6',
7: 'bin7'}
bins = list(map(conversion_dict.get, a))
# ['bin5', 'bin5', 'bin7', 'bin5']
```

**Speed comparison**:

```
# Create a dataframe of 8 million rows for testing
dfbig = pd.concat([df]*2000000, ignore_index=True)
dfbig.shape
# (8000000, 1)
```

```
%%timeit
cut(dfbig['percentage'].to_numpy())
# 38 ms ± 616 µs per loop (mean ± standard deviation of 7 runs, 10 loops each)
```

```
%%timeit
bins = [0, 1, 5, 10, 25, 50, 100]
labels = [1,2,3,4,5,6]
pd.cut(dfbig['percentage'], bins=bins, labels=labels)
# 215 ms ± 9.76 ms per loop (mean ± standard deviation of 7 runs, 10 loops each)
```

We could also use `np.select`

:

```
bins = [0, 1, 5, 10, 25, 50, 100]
df['groups'] = (np.select([df['percentage'].between(i, j, inclusive='right')
for i,j in zip(bins, bins[1:])],
[1, 2, 3, 4, 5, 6]))
```

Output:

```
percentage groups
0 46.50 5
1 44.20 5
2 100.00 6
3 42.12 5
```