How to get the cartesian product of a series of lists

Question:

How can I get the Cartesian product (every possible combination of values) from a group of lists?

Input:

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]

Desired output:

[(1, 'a', 4), (1, 'a', 5), (1, 'b', 4), (1, 'b', 5), (2, 'a', 4), (2, 'a', 5), ...]

One common application for this technique is to avoid deeply nested loops. See Avoiding nested for loops for a more specific duplicate.

If you want a Cartesian product of the same list with itself multiple times, itertools.product can handle that elegantly. See Operation on every pair of element in a list or Generating permutations with repetitions.

Asked By: ʞɔıu

||

Answers:

Use itertools.product, which has been available since Python 2.6.

import itertools

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]
for element in itertools.product(*somelists):
    print(element)

This is the same as:

for element in itertools.product([1, 2, 3], ['a', 'b'], [4, 5]):
    print(element)
Answered By: Kenan Banks
import itertools
>>> for i in itertools.product([1,2,3],['a','b'],[4,5]):
...         print i
...
(1, 'a', 4)
(1, 'a', 5)
(1, 'b', 4)
(1, 'b', 5)
(2, 'a', 4)
(2, 'a', 5)
(2, 'b', 4)
(2, 'b', 5)
(3, 'a', 4)
(3, 'a', 5)
(3, 'b', 4)
(3, 'b', 5)
>>>
Answered By: Jason Baker

with itertools.product:

import itertools
result = list(itertools.product(*somelists))
Answered By: SilentGhost

In Python 2.6 and above you can use ‘itertools.product`. In older versions of Python you can use the following (almost — see documentation) equivalent code from the documentation, at least as a starting point:

def product(*args, **kwds):
    # product('ABCD', 'xy') --> Ax Ay Bx By Cx Cy Dx Dy
    # product(range(2), repeat=3) --> 000 001 010 011 100 101 110 111
    pools = map(tuple, args) * kwds.get('repeat', 1)
    result = [[]]
    for pool in pools:
        result = [x+[y] for x in result for y in pool]
    for prod in result:
        yield tuple(prod)

The result of both is an iterator, so if you really need a list for furthert processing, use list(result).

Answered By: user3850

For Python 2.5 and older:

>>> [(a, b, c) for a in [1,2,3] for b in ['a','b'] for c in [4,5]]
[(1, 'a', 4), (1, 'a', 5), (1, 'b', 4), (1, 'b', 5), (2, 'a', 4), 
 (2, 'a', 5), (2, 'b', 4), (2, 'b', 5), (3, 'a', 4), (3, 'a', 5), 
 (3, 'b', 4), (3, 'b', 5)]

Here’s a recursive version of product() (just an illustration):

def product(*args):
    if not args:
        return iter(((),)) # yield tuple()
    return (items + (item,) 
            for items in product(*args[:-1]) for item in args[-1])

Example:

>>> list(product([1,2,3], ['a','b'], [4,5])) 
[(1, 'a', 4), (1, 'a', 5), (1, 'b', 4), (1, 'b', 5), (2, 'a', 4), 
 (2, 'a', 5), (2, 'b', 4), (2, 'b', 5), (3, 'a', 4), (3, 'a', 5), 
 (3, 'b', 4), (3, 'b', 5)]
>>> list(product([1,2,3]))
[(1,), (2,), (3,)]
>>> list(product([]))
[]
>>> list(product())
[()]
Answered By: jfs

Here is a recursive generator, which doesn’t store any temporary lists

def product(ar_list):
    if not ar_list:
        yield ()
    else:
        for a in ar_list[0]:
            for prod in product(ar_list[1:]):
                yield (a,)+prod

print list(product([[1,2],[3,4],[5,6]]))

Output:

[(1, 3, 5), (1, 3, 6), (1, 4, 5), (1, 4, 6), (2, 3, 5), (2, 3, 6), (2, 4, 5), (2, 4, 6)]
Answered By: Anurag Uniyal

Just to add a bit to what has already been said: if you use sympy, you can use symbols rather than strings which makes them mathematically useful.

import itertools
import sympy

x, y = sympy.symbols('x y')

somelist = [[x,y], [1,2,3], [4,5]]
somelist2 = [[1,2], [1,2,3], [4,5]]

for element in itertools.product(*somelist):
  print element

About sympy.

Answered By: Tyler Heers

I would use list comprehension :

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]

cart_prod = [(a,b,c) for a in somelists[0] for b in somelists[1] for c in somelists[2]]
Answered By: user1035648

A minor modification to the above recursive generator solution in variadic flavor:

def product_args(*args):
    if args:
        for a in args[0]:
            for prod in product_args(*args[1:]) if args[1:] else ((),):
                yield (a,) + prod

And of course a wrapper which makes it work exactly the same as that solution:

def product2(ar_list):
    """
    >>> list(product(()))
    [()]
    >>> list(product2(()))
    []
    """
    return product_args(*ar_list)

with one trade-off: it checks if recursion should break upon each outer loop, and one gain: no yield upon empty call, e.g.product(()), which I suppose would be semantically more correct (see the doctest).

Regarding list comprehension: the mathematical definition applies to an arbitrary number of arguments, while list comprehension could only deal with a known number of them.

Answered By: Mike Lu

Although there are many answers already, I would like to share some of my thoughts:

Iterative approach

def cartesian_iterative(pools):
  result = [[]]
  for pool in pools:
    result = [x+[y] for x in result for y in pool]
  return result

Recursive Approach

def cartesian_recursive(pools):
  if len(pools) > 2:
    pools[0] = product(pools[0], pools[1])
    del pools[1]
    return cartesian_recursive(pools)
  else:
    pools[0] = product(pools[0], pools[1])
    del pools[1]
    return pools
def product(x, y):
  return [xx + [yy] if isinstance(xx, list) else [xx] + [yy] for xx in x for yy in y]

Lambda Approach

def cartesian_reduct(pools):
  return reduce(lambda x,y: product(x,y) , pools)
Answered By: weiyixie

Recursive Approach:

def rec_cart(start, array, partial, results):
  if len(partial) == len(array):
    results.append(partial)
    return 

  for element in array[start]:
    rec_cart(start+1, array, partial+[element], results)

rec_res = []
some_lists = [[1, 2, 3], ['a', 'b'], [4, 5]]  
rec_cart(0, some_lists, [], rec_res)
print(rec_res)

Iterative Approach:

def itr_cart(array):
  results = [[]]
  for i in range(len(array)):
    temp = []
    for res in results:
      for element in array[i]:
        temp.append(res+[element])
    results = temp

  return results

some_lists = [[1, 2, 3], ['a', 'b'], [4, 5]]  
itr_res = itr_cart(some_lists)
print(itr_res)
Answered By: Jai

I believe this works:

def cartesian_product(L):  
   if L:
       return {(a,) + b for a in L[0] 
                        for b in cartesian_product(L[1:])}
   else:
       return {()}
Answered By: Richard Samuelson

You can use itertools.product in the standard library to get the cartesian product. Other cool, related utilities in itertools include permutations, combinations, and combinations_with_replacement. Here is a link to a python codepen for the snippet below:

from itertools import product

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]

result = list(product(*somelists))
print(result)
Answered By: chriskoch

The following code is a 95 % copy from Using numpy to build an array of all combinations of two arrays, all credits go there! This is said to be much faster since it is only in numpy.

import numpy as np

def cartesian(arrays, dtype=None, out=None):
    arrays = [np.asarray(x) for x in arrays]
    if dtype is None:
        dtype = arrays[0].dtype
    n = np.prod([x.size for x in arrays])
    if out is None:
        out = np.zeros([n, len(arrays)], dtype=dtype)

    m = int(n / arrays[0].size) 
    out[:,0] = np.repeat(arrays[0], m)
    if arrays[1:]:
        cartesian(arrays[1:], out=out[0:m, 1:])
        for j in range(1, arrays[0].size):
            out[j*m:(j+1)*m, 1:] = out[0:m, 1:]
    return out

You need to define the dtype as a parameter if you do not want to take the dtype from the first entry for all entries. Take dtype = ‘object’ if you have letters and numbers as items. Test:

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]

[tuple(x) for x in cartesian(somelists, 'object')]

Out:

[(1, 'a', 4),
 (1, 'a', 5),
 (1, 'b', 4),
 (1, 'b', 5),
 (2, 'a', 4),
 (2, 'a', 5),
 (2, 'b', 4),
 (2, 'b', 5),
 (3, 'a', 4),
 (3, 'a', 5),
 (3, 'b', 4),
 (3, 'b', 5)]

This can be done as

[(x, y) for x in range(10) for y in range(10)]

another variable? No problem:

[(x, y, z) for x in range(10) for y in range(10) for z in range(10)]
Answered By: Sergio Polimante

List comprehension is simple and clean:

import itertools

somelists = [
   [1, 2, 3],
   ['a', 'b'],
   [4, 5]
]
lst = [i for i in itertools.product(*somelists)]
Answered By: Lucas Schwartz

In 99% of cases you should use itertools.product. It is written in efficient C code, so it is probably going to be better than any custom implementation.

In the 1% of cases that you need a Python-only algorithm (for example, if you need to modify it somehow), you can use the code below.

def product(*args, repeat=1):
    """Find the Cartesian product of the arguments.

    The interface is identical to itertools.product.
    """
    # Initialize data structures and handle bad input
    if len(args) == 0:
        yield () # Match behavior of itertools.product
        return
    gears = [tuple(arg) for arg in args] * repeat
    for gear in gears:
        if len(gear) == 0:
            return
    tooth_numbers = [0] * len(gears)
    result = [gear[0] for gear in gears]

    # Rotate through all gears
    last_gear_number = len(gears) - 1
    finished = False
    while not finished:
        yield tuple(result)

        # Get next result
        gear_number = last_gear_number
        while gear_number >= 0:
            gear = gears[gear_number]
            tooth_number = tooth_numbers[gear_number] + 1
            if tooth_number < len(gear):
                # No gear change is necessary, so exit the loop
                result[gear_number] = gear[tooth_number]
                tooth_numbers[gear_number] = tooth_number
                break
            result[gear_number] = gear[0]
            tooth_numbers[gear_number] = 0
            gear_number -= 1
        else:
            # We changed all the gears, so we are back at the beginning
            finished = True

The interface is the same as for itertools.product. For example:

>>> list(product((1, 2), "ab"))
[(1, 'a'), (1, 'b'), (2, 'a'), (2, 'b')]

This algorithm has the following advantages over other Python-only solutions on this page:

  • It does not build up intermediate results in memory, keeping the memory footprint small.
  • It uses iteration instead of recursion, meaning you will not get "maximum recursion depth exceeded" errors.
  • It can accept any number of input iterables, making it more flexible than using nested for loops.

This code is based on the itertools.product algorithm from PyPy, which is released under the MIT licence.

Answered By: Jack Taylor
Categories: questions Tags: , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.