What is a clean "pythonic" way to implement multiple constructors?


I can’t find a definitive answer for this. As far as I know, you can’t have multiple __init__ functions in a Python class. So how do I solve this problem?

Suppose I have a class called Cheese with the number_of_holes property. How can I have two ways of creating cheese objects…

  1. One that takes a number of holes like this: parmesan = Cheese(num_holes = 15).
  2. And one that takes no arguments and just randomizes the number_of_holes property: gouda = Cheese().

I can think of only one way to do this, but this seems clunky:

class Cheese():
    def __init__(self, num_holes = 0):
        if (num_holes == 0):
            # Randomize number_of_holes
            number_of_holes = num_holes

What do you say? Is there another way?

Asked By: winsmith



Actually None is much better for “magic” values:

class Cheese():
    def __init__(self, num_holes = None):
        if num_holes is None:

Now if you want complete freedom of adding more parameters:

class Cheese():
    def __init__(self, *args, **kwargs):
        #args -- tuple of anonymous arguments
        #kwargs -- dictionary of named arguments
        self.num_holes = kwargs.get('num_holes',random_holes())

To better explain the concept of *args and **kwargs (you can actually change these names):

def f(*args, **kwargs):
   print 'args: ', args, ' kwargs: ', kwargs

>>> f('a')
args:  ('a',)  kwargs:  {}
>>> f(ar='a')
args:  ()  kwargs:  {'ar': 'a'}
>>> f(1,2,param=3)
args:  (1, 2)  kwargs:  {'param': 3}


Answered By: vartec

Use num_holes=None as a default, instead. Then check for whether num_holes is None, and if so, randomize. That’s what I generally see, anyway.

More radically different construction methods may warrant a classmethod that returns an instance of cls.

Answered By: Devin Jeanpierre

Using num_holes=None as the default is fine if you are going to have just __init__.

If you want multiple, independent "constructors", you can provide these as class methods. These are usually called factory methods. In this case you could have the default for num_holes be 0.

class Cheese(object):
    def __init__(self, num_holes=0):
        "defaults to a solid cheese"
        self.number_of_holes = num_holes

    def random(cls):
        return cls(randint(0, 100))

    def slightly_holey(cls):
        return cls(randint(0, 33))

    def very_holey(cls):
        return cls(randint(66, 100))

Now create object like this:

gouda = Cheese()
emmentaler = Cheese.random()
leerdammer = Cheese.slightly_holey()
Answered By: Ber

Why do you think your solution is “clunky”? Personally I would prefer one constructor with default values over multiple overloaded constructors in situations like yours (Python does not support method overloading anyway):

def __init__(self, num_holes=None):
    if num_holes is None:
        # Construct a gouda
        # custom cheese
    # common initialization

For really complex cases with lots of different constructors, it might be cleaner to use different factory functions instead:

def create_gouda(cls):
    c = Cheese()
    # ...
    return c

def create_cheddar(cls):
    # ...

In your cheese example you might want to use a Gouda subclass of Cheese though…

Answered By: Ferdinand Beyer

All of these answers are excellent if you want to use optional parameters, but another Pythonic possibility is to use a classmethod to generate a factory-style pseudo-constructor:

def __init__(self, num_holes):

  # do stuff with the number

def fromRandom(cls):

  return cls( # some-random-number )
Answered By: Yes – that Jake.

The best answer is the one above about default arguments, but I had fun writing this, and it certainly does fit the bill for “multiple constructors”. Use at your own risk.

What about the new method.

“Typical implementations create a new instance of the class by invoking the superclass’s new() method using super(currentclass, cls).new(cls[, …]) with appropriate arguments and then modifying the newly-created instance as necessary before returning it.”

So you can have the new method modify your class definition by attaching the appropriate constructor method.

class Cheese(object):
    def __new__(cls, *args, **kwargs):

        obj = super(Cheese, cls).__new__(cls)
        num_holes = kwargs.get('num_holes', random_holes())

        if num_holes == 0:
            cls.__init__ = cls.foomethod
            cls.__init__ = cls.barmethod

        return obj

    def foomethod(self, *args, **kwargs):
        print "foomethod called as __init__ for Cheese"

    def barmethod(self, *args, **kwargs):
        print "barmethod called as __init__ for Cheese"

if __name__ == "__main__":
    parm = Cheese(num_holes=5)
Answered By: mluebke

Those are good ideas for your implementation, but if you are presenting a cheese making interface to a user. They don’t care how many holes the cheese has or what internals go into making cheese. The user of your code just wants “gouda” or “parmesean” right?

So why not do this:

# cheese_user.py
from cheeses import make_gouda, make_parmesean

gouda = make_gouda()
paremesean = make_parmesean()

And then you can use any of the methods above to actually implement the functions:

# cheeses.py
class Cheese(object):
    def __init__(self, *args, **kwargs):
        #args -- tuple of anonymous arguments
        #kwargs -- dictionary of named arguments
        self.num_holes = kwargs.get('num_holes',random_holes())

def make_gouda():
    return Cheese()

def make_paremesean():
    return Cheese(num_holes=15)

This is a good encapsulation technique, and I think it is more Pythonic. To me this way of doing things fits more in line more with duck typing. You are simply asking for a gouda object and you don’t really care what class it is.

Answered By: Brad C

I’d use inheritance. Especially if there are going to be more differences than number of holes. Especially if Gouda will need to have different set of members then Parmesan.

class Gouda(Cheese):
    def __init__(self):

class Parmesan(Cheese):
    def __init__(self):
Answered By: Michel Samia

One should definitely prefer the solutions already posted, but since no one mentioned this solution yet, I think it is worth mentioning for completeness.

The @classmethod approach can be modified to provide an alternative constructor which does not invoke the default constructor (__init__). Instead, an instance is created using __new__.

This could be used if the type of initialization cannot be selected based on the type of the constructor argument, and the constructors do not share code.


class MyClass(set):

    def __init__(self, filename):
        self._value = load_from_file(filename)

    def from_somewhere(cls, somename):
        obj = cls.__new__(cls)  # Does not call __init__
        super(MyClass, obj).__init__()  # Don't forget to call any polymorphic base class initializers
        obj._value = load_from_somewhere(somename)
        return obj
Answered By: Andrzej Pronobis

This is how I solved it for a YearQuarter class I had to create. I created an __init__ which is very tolerant to a wide variety of input.

You use it like this:

>>> from datetime import date
>>> temp1 = YearQuarter(year=2017, month=12)
>>> print temp1
>>> temp2 = YearQuarter(temp1)
>>> print temp2
>>> temp3 = YearQuarter((2017, 6))
>>> print temp3
>>> temp4 = YearQuarter(date(2017, 1, 18))
>>> print temp4
>>> temp5 = YearQuarter(year=2017, quarter = 3)
>>> print temp5

And this is how the __init__ and the rest of the class looks like:

import datetime

class YearQuarter:

    def __init__(self, *args, **kwargs):
        if len(args) == 1:
            [x]     = args

            if isinstance(x, datetime.date):
                self._year      = int(x.year)
                self._quarter   = (int(x.month) + 2) / 3
            elif isinstance(x, tuple):
                year, month     = x

                self._year      = int(year)

                month           = int(month)

                if 1 <= month <= 12:
                    self._quarter   = (month + 2) / 3
                    raise ValueError

            elif isinstance(x, YearQuarter):
                self._year      = x._year
                self._quarter   = x._quarter

        elif len(args) == 2:
            year, month     = args

            self._year      = int(year)

            month           = int(month)

            if 1 <= month <= 12:
                self._quarter   = (month + 2) / 3
                raise ValueError

        elif kwargs:

            self._year      = int(kwargs["year"])

            if "quarter" in kwargs:
                quarter     = int(kwargs["quarter"])

                if 1 <= quarter <= 4:
                    self._quarter     = quarter
                    raise ValueError
            elif "month" in kwargs:
                month   = int(kwargs["month"])

                if 1 <= month <= 12:
                    self._quarter     = (month + 2) / 3
                    raise ValueError

    def __str__(self):
        return '{0}-Q{1}'.format(self._year, self._quarter)
Answered By: Elmex80s
class Cheese:
    def __init__(self, *args, **kwargs):
        """A user-friendly initialiser for the general-purpose constructor.

    def _init_parmesan(self, *args, **kwargs):
        """A special initialiser for Parmesan cheese.

    def _init_gauda(self, *args, **kwargs):
        """A special initialiser for Gauda cheese.

    def make_parmesan(cls, *args, **kwargs):
        new = cls.__new__(cls)
        new._init_parmesan(*args, **kwargs)
        return new

    def make_gauda(cls, *args, **kwargs):
        new = cls.__new__(cls)
        new._init_gauda(*args, **kwargs)
        return new
Answered By: Alexey

Since my initial answer was criticised on the basis that my special-purpose constructors did not call the (unique) default constructor, I post here a modified version that honours the wishes that all constructors shall call the default one:

class Cheese:
    def __init__(self, *args, _initialiser="_default_init", **kwargs):
        """A multi-initialiser.
        getattr(self, _initialiser)(*args, **kwargs)

    def _default_init(self, ...):
        """A user-friendly smart or general-purpose initialiser.

    def _init_parmesan(self, ...):
        """A special initialiser for Parmesan cheese.

    def _init_gouda(self, ...):
        """A special initialiser for Gouda cheese.

    def make_parmesan(cls, *args, **kwargs):
        return cls(*args, **kwargs, _initialiser="_init_parmesan")

    def make_gouda(cls, *args, **kwargs):
        return cls(*args, **kwargs, _initialiser="_init_gouda")
Answered By: Alexey


For the specific cheese example, I agree with many of the other answers about using default values to signal random initialization or to use a static factory method. However, there may also be related scenarios that you had in mind where there is value in having alternative, concise ways of calling the constructor without hurting the quality of parameter names or type information.

Since Python 3.8 and functools.singledispatchmethod can help accomplish this in many cases (and the more flexible multimethod can apply in even more scenarios). (This related post describes how one could accomplish the same in Python 3.4 without a library.) I haven’t seen examples in the documentation for either of these that specifically shows overloading __init__ as you ask about, but it appears that the same principles for overloading any member method apply (as shown below).

"Single dispatch" (available in the standard library) requires that there be at least one positional parameter and that the type of the first argument be sufficient to distinguish among the possible overloaded options. For the specific Cheese example, this doesn’t hold since you wanted random holes when no parameters were given, but multidispatch does support the very same syntax and can be used as long as each method version can be distinguish based on the number and type of all arguments together.


Here is an example of how to use either method (some of the details are in order to please mypy which was my goal when I first put this together):

from functools import singledispatchmethod as overload
# or the following more flexible method after `pip install multimethod`
# from multimethod import multidispatch as overload

class MyClass:

    @overload  # type: ignore[misc]
    def __init__(self, a: int = 0, b: str = 'default'):
        self.a = a
        self.b = b

    def _from_str(self, b: str, a: int = 0):
        self.__init__(a, b)  # type: ignore[misc]

    def __repr__(self) -> str:
        return f"({self.a}, {self.b})"

    MyClass(1, "test"),
    MyClass("test", 1),
    MyClass(1, b="test"),
    MyClass("test", a=1),
    # MyClass(),  # `multidispatch` version handles these 3, too.
    # MyClass(a=1, b="test"),
    # MyClass(b="test", a=1),


[(1, test), (1, test), (0, test), (1, test), (1, test), (0, test), (1, default)]


  • I wouldn’t usually make the alias called overload, but it helped make the diff between using the two methods just a matter of which import you use.
  • The # type: ignore[misc] comments are not necessary to run, but I put them in there to please mypy which doesn’t like decorating __init__ nor calling __init__ directly.
  • If you are new to the decorator syntax, realize that putting @overload before the definition of __init__ is just sugar for __init__ = overload(the original definition of __init__). In this case, overload is a class so the resulting __init__ is an object that has a __call__ method so that it looks like a function but that also has a .register method which is being called later to add another overloaded version of __init__. This is a bit messy, but it please mypy becuase there are no method names being defined twice. If you don’t care about mypy and are planning to use the external library anyway, multimethod also has simpler alternative ways of specifying overloaded versions.
  • Defining __repr__ is simply there to make the printed output meaningful (you don’t need it in general).
  • Notice that multidispatch is able to handle three additional input combinations that don’t have any positional parameters.
Answered By: teichert

I do not see a straightforward answer with an example yet. The idea is simple:

  • use __init__ as the "basic" constructor as python only allows one __init__ method
  • use @classmethod to create any other constructors and call the basic constructor

Here is a new try.

 class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

    def fromBirthYear(cls, name, birthYear):
        return cls(name, date.today().year - birthYear)


p = Person('tim', age=18)
p = Person.fromBirthYear('tim', birthYear=2004)
Answered By: Tim C.
Categories: questions Tags: , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.