How to create a density plot

Question:

In R I can create the desired output by doing:

data = c(rep(1.5, 7), rep(2.5, 2), rep(3.5, 8),
         rep(4.5, 3), rep(5.5, 1), rep(6.5, 8))
plot(density(data, bw=0.5))

Density plot in R

In python (with matplotlib) the closest I got was with a simple histogram:

import matplotlib.pyplot as plt
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
plt.hist(data, bins=6)
plt.show()

Histogram in matplotlib

I also tried the normed=True parameter but couldn’t get anything other than trying to fit a gaussian to the histogram.

My latest attempts were around scipy.stats and gaussian_kde, following examples on the web, but I’ve been unsuccessful so far.

Asked By: unode

||

Answers:

Maybe try something like:

import matplotlib.pyplot as plt
import numpy
from scipy import stats
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
density = stats.kde.gaussian_kde(data)
x = numpy.arange(0., 8, .1)
plt.plot(x, density(x))
plt.show()

You can easily replace gaussian_kde() by a different kernel density estimate.

Answered By: Sven Marnach

Sven has shown how to use the class gaussian_kde from Scipy, but you will notice that it doesn’t look quite like what you generated with R. This is because gaussian_kde tries to infer the bandwidth automatically. You can play with the bandwidth in a way by changing the function covariance_factor of the gaussian_kde class. First, here is what you get without changing that function:

alt text

However, if I use the following code:

import matplotlib.pyplot as plt
import numpy as np
from scipy.stats import gaussian_kde
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
density = gaussian_kde(data)
xs = np.linspace(0,8,200)
density.covariance_factor = lambda : .25
density._compute_covariance()
plt.plot(xs,density(xs))
plt.show()

I get

alt text

which is pretty close to what you are getting from R. What have I done? gaussian_kde uses a changable function, covariance_factor to calculate its bandwidth. Before changing the function, the value returned by covariance_factor for this data was about .5. Lowering this lowered the bandwidth. I had to call _compute_covariance after changing that function so that all of the factors would be calculated correctly. It isn’t an exact correspondence with the bw parameter from R, but hopefully it helps you get in the right direction.

Answered By: Justin Peel

Five years later, when I Google “how to create a kernel density plot using python”, this thread still shows up at the top!

Today, a much easier way to do this is to use seaborn, a package that provides many convenient plotting functions and good style management.

import numpy as np
import seaborn as sns
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
sns.set_style('whitegrid')
sns.kdeplot(np.array(data), bw=0.5)

enter image description here

Answered By: Xin

Option 1:

Use pandas dataframe plot (built on top of matplotlib):

import pandas as pd
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
pd.DataFrame(data).plot(kind='density') # or pd.Series()

enter image description here

Option 2:

Use distplot of seaborn:

import seaborn as sns
data = [1.5]*7 + [2.5]*2 + [3.5]*8 + [4.5]*3 + [5.5]*1 + [6.5]*8
sns.distplot(data, hist=False)

enter image description here

Answered By: Aziz Alto

The density plot can also be created by using matplotlib:
The function plt.hist(data) returns the y and x values necessary for the density plot (see the documentation https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.hist.html).
Resultingly, the following code creates a density plot by using the matplotlib library:

import matplotlib.pyplot as plt
dat=[-1,2,1,4,-5,3,6,1,2,1,2,5,6,5,6,2,2,2]
a=plt.hist(dat,density=True)
plt.close()
plt.figure()
plt.plot(a[1][1:],a[0])      

This code returns the following density plot

enter image description here

Answered By: tetrisforjeff

You can do something like:

s = np.random.normal(2, 3, 1000)
import matplotlib.pyplot as plt
count, bins, ignored = plt.hist(s, 30, density=True)
plt.plot(bins, 1/(3 * np.sqrt(2 * np.pi)) * np.exp( - (bins - 2)**2 / (2 * 3**2) ), 
linewidth=2, color='r')
plt.show()
Answered By: zerryberry
Categories: questions Tags: , , , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.