LabelEncoder: TypeError: '>' not supported between instances of 'float' and 'str'

Question:

I’m facing this error for multiple variables even treating missing values.
For example:

le = preprocessing.LabelEncoder()
categorical = list(df.select_dtypes(include=['object']).columns.values)
for cat in categorical:
    print(cat)
    df[cat].fillna('UNK', inplace=True)
    df[cat] = le.fit_transform(df[cat])
#     print(le.classes_)
#     print(le.transform(le.classes_))


---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
<ipython-input-24-424a0952f9d0> in <module>()
      4     print(cat)
      5     df[cat].fillna('UNK', inplace=True)
----> 6     df[cat] = le.fit_transform(df[cat].fillna('UNK'))
      7 #     print(le.classes_)
      8 #     print(le.transform(le.classes_))

C:Userspaula.ceccon.ribeiroAppDataLocalContinuumAnaconda3libsite-packagessklearnpreprocessinglabel.py in fit_transform(self, y)
    129         y = column_or_1d(y, warn=True)
    130         _check_numpy_unicode_bug(y)
--> 131         self.classes_, y = np.unique(y, return_inverse=True)
    132         return y
    133 

C:Userspaula.ceccon.ribeiroAppDataLocalContinuumAnaconda3libsite-packagesnumpylibarraysetops.py in unique(ar, return_index, return_inverse, return_counts)
    209 
    210     if optional_indices:
--> 211         perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
    212         aux = ar[perm]
    213     else:

TypeError: '>' not supported between instances of 'float' and 'str'

Checking the variable that lead to the error results ins:

df['CRM do M├ędico'].isnull().sum()
0

Besides nan values, what could be causing this error?

Asked By: pceccon

||

Answers:

This is due to the series df[cat] containing elements that have varying data types e.g.(strings and/or floats). This could be due to the way the data is read, i.e. numbers are read as float and text as strings or the datatype was float and changed after the fillna operation.

In other words

pandas data type ‘Object’ indicates mixed types rather than str type

so using the following line:

df[cat] = le.fit_transform(df[cat].astype(str))

should help

Answered By: sgDysregulation

Or use a cast with split to uniform type of str

unique, counts = numpy.unique(str(a).split(), return_counts=True)
Answered By: Max Kleiner

As string data types have variable length, it is by default stored as object type. I faced this problem after treating missing values too. Converting all those columns to type ‘category’ before label encoding worked in my case.

df[cat]=df[cat].astype('category')

And then check df.dtypes and perform label encoding.

Answered By: Rutuja

You can use

df['cat'] = df['cat'].apply(str)
Answered By: lin sherry

In my case, I had nan in a list; which limits certain operations you can do

Answered By: DanielBell99
Categories: questions Tags: , ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.