Duplicate strings in a list and add integer suffixes to newly added ones

Question:

Suppose I have a list:

l = ['a', 'b', 'c']

And its suffix list:

l2 = ['a_1', 'b_1', 'c_1']

I’d like the desired output to be:

out_l = ['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

The result is the interleaved version of the two lists above.

I can write regular for loop to get this done, but I’m wondering if there’s a more Pythonic way (e.g., using list comprehension or lambda) to get it done.

I’ve tried something like this:

list(map(lambda x: x[1]+'_'+str(x[0]+1), enumerate(a)))
# this only returns ['a_1', 'b_2', 'c_3']

Furthermore, what changes would need to be made for the general case i.e., for 2 or more lists where l2 is not necessarily a derivative of l?

Asked By: user1330974

||

Answers:

You can use a list comprehension like so:

l=['a','b','c']
new_l = [i for b in [[a, '{}_{}'.format(a, i)] for i, a in enumerate(l, start=1)] for i in b]

Output:

['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

Optional, shorter method:

[j for i, a in enumerate(l, 1) for j in [a, '{}_{}'.format(a, i)]]
Answered By: Ajax1234

yield

You can use a generator for an elegant solution. At each iteration, yield twice—once with the original element, and once with the element with the added suffix.

The generator will need to be exhausted; that can be done by tacking on a list call at the end.

def transform(l):
    for i, x in enumerate(l, 1):
        yield x
        yield f'{x}_{i}'  # {}_{}'.format(x, i)

You can also re-write this using the yield from syntax for generator delegation:

def transform(l):
    for i, x in enumerate(l, 1):
        yield from (x, f'{x}_{i}') # (x, {}_{}'.format(x, i))

out_l = list(transform(l))
print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

If you’re on versions older than python-3.6, replace f'{x}_{i}' with '{}_{}'.format(x, i).

Generalising
Consider a general scenario where you have N lists of the form:

l1 = [v11, v12, ...]
l2 = [v21, v22, ...]
l3 = [v31, v32, ...]
...

Which you would like to interleave. These lists are not necessarily derived from each other.

To handle interleaving operations with these N lists, you’ll need to iterate over pairs:

def transformN(*args):
    for vals in zip(*args):
        yield from vals

out_l = transformN(l1, l2, l3, ...)

Sliced list.__setitem__

I’d recommend this from the perspective of performance. First allocate space for an empty list, and then assign list items to their appropriate positions using sliced list assignment. l goes into even indexes, and l' (l modified) goes into odd indexes.

out_l = [None] * (len(l) * 2)
out_l[::2] = l
out_l[1::2] = [f'{x}_{i}' for i, x in enumerate(l, 1)]  # [{}_{}'.format(x, i) ...]

print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

This is consistently the fastest from my timings (below).

Generalising
To handle N lists, iteratively assign to slices.

list_of_lists = [l1, l2, ...]

out_l = [None] * len(list_of_lists[0]) * len(list_of_lists)
for i, l in enumerate(list_of_lists):
    out_l[i::2] = l

zip + chain.from_iterable

A functional approach, similar to @chrisz’ solution. Construct pairs using zip and then flatten it using itertools.chain.

from itertools import chain
# [{}_{}'.format(x, i) ...]
out_l = list(chain.from_iterable(zip(l, [f'{x}_{i}' for i, x in enumerate(l, 1)]))) 

print(out_l)
['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

iterools.chain is widely regarded as the pythonic list flattening approach.

Generalising
This is the simplest solution to generalise, and I suspect the most efficient for multiple lists when N is large.

list_of_lists = [l1, l2, ...]
out_l = list(chain.from_iterable(zip(*list_of_lists)))

Performance

Let’s take a look at some perf-tests for the simple case of two lists (one list with its suffix). General cases will not be tested since the results widely vary with by data.

enter image description here

Benchmarking code, for reference.

Functions

def cs1(l):
    def _cs1(l):
        for i, x in enumerate(l, 1):
            yield x
            yield f'{x}_{i}'

    return list(_cs1(l))

def cs2(l):
    out_l = [None] * (len(l) * 2)
    out_l[::2] = l
    out_l[1::2] = [f'{x}_{i}' for i, x in enumerate(l, 1)]

    return out_l

def cs3(l):
    return list(chain.from_iterable(
        zip(l, [f'{x}_{i}' for i, x in enumerate(l, 1)])))

def ajax(l):
    return [
        i for b in [[a, '{}_{}'.format(a, i)] 
        for i, a in enumerate(l, start=1)] 
        for i in b
    ]

def ajax_cs0(l):
    # suggested improvement to ajax solution
    return [j for i, a in enumerate(l, 1) for j in [a, '{}_{}'.format(a, i)]]

def chrisz(l):
    return [
        val 
        for pair in zip(l, [f'{k}_{j+1}' for j, k in enumerate(l)]) 
        for val in pair
    ]
Answered By: cs95

You could use zip:

[val for pair in zip(l, [f'{k}_{j+1}' for j, k in enumerate(l)]) for val in pair]

Output:

['a', 'a_1', 'b', 'b_2', 'c', 'c_3']
Answered By: user3483203

If you wanted to return [["a","a_1"],["b","b_2"],["c","c_3"]] you could write

new_l=[[x,"{}_{}".format(x,i+1)] for i,x in enumerate(l)]

This isn’t what you want, instead you want ["a","a_1"]+["b","b_2"]+["c","c_3"]. This can be made from the result of the operation above using sum(); since you’re summing lists you need to add the empty list as an argument to avoid an error. So that gives

new_l=sum(([x,"{}_{}".format(x,i+1)] for i,x in enumerate(l)),[])

I don’t know how this compares speed-wise (probably not well), but I find it easier to understand what’s going on than the other list-comprehension based answers.

Answered By: Especially Lime

Here’s my simple implementation

l=['a','b','c']
# generate new list with the indices of the original list
new_list=l + ['{0}_{1}'.format(i, (l.index(i) + 1)) for i in l]
# sort the new list in ascending order
new_list.sort()
print new_list
# Should display ['a', 'a_1', 'b', 'b_2', 'c', 'c_3']
Answered By: Isaac Boakye

A very simple solution:

out_l=[]
for i,x in enumerate(l,1):
    out_l.extend([x,f"{x}_{i}"])
Answered By: kantal

Here is an easier list comprehension for this problem as well:

l = ['a', 'b', 'c']
print([ele for index, val in enumerate(l) for ele in (val, val + f'_{index + 1}')])

Output:

['a', 'a_1', 'b', 'b_2', 'c', 'c_3']

Note this is just a simpler solution for interleaving the two lists. This is not a solution for multiple lists. The reason I use two for loops is because, at the time of writing, list comprehension does not support tuple unpacking.