# Numpy, multiply array with scalar

## Question:

Is it possible to use ufuncs https://docs.scipy.org/doc/numpy/reference/ufuncs.html
In order to map function to array (1D and / or 2D) and scalar
If not what would be my way to achieve this?
For example:

``````a_1 = np.array([1.0, 2.0, 3.0])
a_2 = np.array([[1., 2.], [3., 4.]])
b = 2.0
``````

Expected result:

``````a_1 * b = array([2.0, 4.0, 6.0]);
a_2 * b = array([[2., 4.], [6., 8.]])
``````

I`m using python 2.7 if it is relevant to an issue.

You can multiply numpy arrays by scalars and it just works.

``````>>> import numpy as np
>>> np.array([1, 2, 3]) * 2
array([2, 4, 6])
>>> np.array([[1, 2, 3], [4, 5, 6]]) * 2
array([[ 2,  4,  6],
[ 8, 10, 12]])
``````

This is also a very fast and efficient operation. With your example:

``````>>> a_1 = np.array([1.0, 2.0, 3.0])
>>> a_2 = np.array([[1., 2.], [3., 4.]])
>>> b = 2.0
>>> a_1 * b
array([2., 4., 6.])
>>> a_2 * b
array([[2., 4.],
[6., 8.]])
``````

Using .multiply() (ufunc multiply)

``````a_1 = np.array([1.0, 2.0, 3.0])
a_2 = np.array([[1., 2.], [3., 4.]])
b = 2.0

np.multiply(a_1,b)
# array([2., 4., 6.])
np.multiply(a_2,b)
# array([[2., 4.],[6., 8.]])
``````