VRP example in the docs gives different output when I run it

Question:

On https://developers.google.com/optimization/routing/vrp, it says:

The complete programs are shown in the next section. When you run the programs, they display the following output:

Route for vehicle 0:
0 -> 8 -> 6 -> 2 -> 5 -> 0
Distance of route: 1552m

Route for vehicle 1: 0 -> 7 -> 1 -> 4 -> 3 -> 0 Distance of route:
1552m

Route for vehicle 2: 0 -> 9 -> 10 -> 16 -> 14 -> 0 Distance of route:
1552m

Route for vehicle 3: 0 -> 12 -> 11 -> 15 -> 13 -> 0 Distance of
route: 1552m

Total distance of all routes: 6208m

However, when I run the example given on that page:

"""Simple Vehicles Routing Problem (VRP).

   This is a sample using the routing library python wrapper to solve a VRP
   problem.
   A description of the problem can be found here:
   http://en.wikipedia.org/wiki/Vehicle_routing_problem.

   Distances are in meters.
"""

from ortools.constraint_solver import routing_enums_pb2
from ortools.constraint_solver import pywrapcp


def create_data_model():
    """Stores the data for the problem."""
    data = {}
    data['distance_matrix'] = [
        [
            0, 548, 776, 696, 582, 274, 502, 194, 308, 194, 536, 502, 388, 354,
            468, 776, 662
        ],
        [
            548, 0, 684, 308, 194, 502, 730, 354, 696, 742, 1084, 594, 480, 674,
            1016, 868, 1210
        ],
        [
            776, 684, 0, 992, 878, 502, 274, 810, 468, 742, 400, 1278, 1164,
            1130, 788, 1552, 754
        ],
        [
            696, 308, 992, 0, 114, 650, 878, 502, 844, 890, 1232, 514, 628, 822,
            1164, 560, 1358
        ],
        [
            582, 194, 878, 114, 0, 536, 764, 388, 730, 776, 1118, 400, 514, 708,
            1050, 674, 1244
        ],
        [
            274, 502, 502, 650, 536, 0, 228, 308, 194, 240, 582, 776, 662, 628,
            514, 1050, 708
        ],
        [
            502, 730, 274, 878, 764, 228, 0, 536, 194, 468, 354, 1004, 890, 856,
            514, 1278, 480
        ],
        [
            194, 354, 810, 502, 388, 308, 536, 0, 342, 388, 730, 468, 354, 320,
            662, 742, 856
        ],
        [
            308, 696, 468, 844, 730, 194, 194, 342, 0, 274, 388, 810, 696, 662,
            320, 1084, 514
        ],
        [
            194, 742, 742, 890, 776, 240, 468, 388, 274, 0, 342, 536, 422, 388,
            274, 810, 468
        ],
        [
            536, 1084, 400, 1232, 1118, 582, 354, 730, 388, 342, 0, 878, 764,
            730, 388, 1152, 354
        ],
        [
            502, 594, 1278, 514, 400, 776, 1004, 468, 810, 536, 878, 0, 114,
            308, 650, 274, 844
        ],
        [
            388, 480, 1164, 628, 514, 662, 890, 354, 696, 422, 764, 114, 0, 194,
            536, 388, 730
        ],
        [
            354, 674, 1130, 822, 708, 628, 856, 320, 662, 388, 730, 308, 194, 0,
            342, 422, 536
        ],
        [
            468, 1016, 788, 1164, 1050, 514, 514, 662, 320, 274, 388, 650, 536,
            342, 0, 764, 194
        ],
        [
            776, 868, 1552, 560, 674, 1050, 1278, 742, 1084, 810, 1152, 274,
            388, 422, 764, 0, 798
        ],
        [
            662, 1210, 754, 1358, 1244, 708, 480, 856, 514, 468, 354, 844, 730,
            536, 194, 798, 0
        ],
    ]
    data['num_vehicles'] = 4
    data['depot'] = 0
    return data


def print_solution(data, manager, routing, solution):
    """Prints solution on console."""
    print(f'Objective: {solution.ObjectiveValue()}')
    max_route_distance = 0
    for vehicle_id in range(data['num_vehicles']):
        index = routing.Start(vehicle_id)
        plan_output = 'Route for vehicle {}:n'.format(vehicle_id)
        route_distance = 0
        while not routing.IsEnd(index):
            plan_output += ' {} -> '.format(manager.IndexToNode(index))
            previous_index = index
            index = solution.Value(routing.NextVar(index))
            route_distance += routing.GetArcCostForVehicle(
                previous_index, index, vehicle_id)
        plan_output += '{}n'.format(manager.IndexToNode(index))
        plan_output += 'Distance of the route: {}mn'.format(route_distance)
        print(plan_output)
        max_route_distance = max(route_distance, max_route_distance)
    print('Maximum of the route distances: {}m'.format(max_route_distance))



def main():
    """Entry point of the program."""
    # Instantiate the data problem.
    data = create_data_model()

    # Create the routing index manager.
    manager = pywrapcp.RoutingIndexManager(len(data['distance_matrix']),
                                           data['num_vehicles'], data['depot'])

    # Create Routing Model.
    routing = pywrapcp.RoutingModel(manager)


    # Create and register a transit callback.
    def distance_callback(from_index, to_index):
        """Returns the distance between the two nodes."""
        # Convert from routing variable Index to distance matrix NodeIndex.
        from_node = manager.IndexToNode(from_index)
        to_node = manager.IndexToNode(to_index)
        return data['distance_matrix'][from_node][to_node]

    transit_callback_index = routing.RegisterTransitCallback(distance_callback)

    # Define cost of each arc.
    routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index)

    # Add Distance constraint.
    dimension_name = 'Distance'
    routing.AddDimension(
        transit_callback_index,
        0,  # no slack
        3000,  # vehicle maximum travel distance
        True,  # start cumul to zero
        dimension_name)
    distance_dimension = routing.GetDimensionOrDie(dimension_name)
    distance_dimension.SetGlobalSpanCostCoefficient(100)

    # Setting first solution heuristic.
    search_parameters = pywrapcp.DefaultRoutingSearchParameters()
    search_parameters.first_solution_strategy = (
        routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC)

    # Solve the problem.
    solution = routing.SolveWithParameters(search_parameters)

    # Print solution on console.
    if solution:
        print_solution(data, manager, routing, solution)
    else:
        print('No solution found !')


if __name__ == '__main__':
    main()

I get the following output:

Objective: 177500
Route for vehicle 0: 0 -> 9 -> 10 -> 2 -> 6 ->
5 -> 0 Distance of the route: 1712m

Route for vehicle 1: 0 -> 16 -> 14 -> 8 -> 0 Distance of the
route: 1484m

Route for vehicle 2: 0 -> 7 -> 1 -> 4 -> 3 -> 0 Distance of the
route: 1552m

Route for vehicle 3: 0 -> 13 -> 15 -> 11 -> 12 -> 0 Distance of
the route: 1552m

Maximum of the route distances: 1712m

I’m running the latest version of the python ortools library (9.5) with Python 3.11.

So

Are the docs wrong?

Or is the code in the latest release bugged (the solution it gives is worse than the docs, so it may be a regression)?

Or is there something messed up with my local environment that is causing the difference? Is it happening for other people too?

Asked By: Spycho

||

Answers:

These are simple examples with just a greedy descent.
The result is very dependent on how we chain local search operators. This changed in a recent release but the docs were not updated.

If you add any meta-heuristic, you will easily get the best solution.

See discussion in the issue #3570

Answered By: Laurent Perron
Categories: questions Tags: ,
Answers are sorted by their score. The answer accepted by the question owner as the best is marked with
at the top-right corner.